
REVIEW Open Access

Dichotomy in the definition of prescriptive
information suggests both prescribed data and
prescribed algorithms: biosemiotics applications
in genomic systems
David J D’Onofrio1*, David L Abel2* and Donald E Johnson3

* Correspondence: Davidj@email.
phoenix.edu; life@us.net
1Control Systems Modeling and
Simulation, General Dynamics,
Sterling Heights MI, USA and
College of Arts and Science, Math
Department, University of Phoenix,
Detroit MI, USA
2Director, The Gene Emergence
Project, The Origin of Life Science
Foundation, Inc., 113 Hedgewood
Dr., Greenbelt, MD 20770-1610 USA
Full list of author information is
available at the end of the article

Abstract

The fields of molecular biology and computer science have cooperated over recent
years to create a synergy between the cybernetic and biosemiotic relationship found
in cellular genomics to that of information and language found in computational
systems. Biological information frequently manifests its “meaning” through instruction
or actual production of formal bio-function. Such information is called Prescriptive
Information (PI). PI programs organize and execute a prescribed set of choices. Closer
examination of this term in cellular systems has led to a dichotomy in its definition
suggesting both prescribed data and prescribed algorithms are constituents of PI.
This paper looks at this dichotomy as expressed in both the genetic code and in the
central dogma of protein synthesis. An example of a genetic algorithm is modeled
after the ribosome, and an examination of the protein synthesis process is used to
differentiate PI data from PI algorithms.

Keywords: Prescriptive Information (PI), Functional Information, algorithm, proces-
sing, language, ribosome, biocybernetics, biosemiosis, semantic information, control,
regulation, automata, Frame Shift Mutation

Background
Bioinformatics has opened up the field of molecular biology through the use of com-

puter science and statistics. Data mining of genetic information includes discovering

relationships between individual DNA sequences and variability in disease [1]. More

importantly, the application of computer science will contribute to identifying intricate

complex data and algorithmic structures that are part of the biological processes that

manage and maintain metabolic functions of the cell.

Biological organisms are considered to be controlled and regulated by Functional

Information (FI) [2-8]. FI comes closer to expressing the intuitive and semantic sense

of the word “information” than mere Shannon combinatorial uncertainty or reduced

uncertainty (poorly termed “mutual entropy”). The innumerable attempts that have

been made to reduce the functional information of genomics and molecular biology to

nothing more than physical combinatorics and/or thermodynamics will fail for reasons

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

© 2012 D’Onofrio et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:Davidj@email.phoenix.edu
mailto:Davidj@email.phoenix.edu
mailto:life@us.net
http://creativecommons.org/licenses/by/2.0

best summarized in the peer-reviewed anthology entitled The First Gene: The Birth of

Programming, Messaging and Formal Control [9].

“Functional Information (FI)” has now been formalized into two subsets: Descriptive

Information (DI) [7] and Prescriptive Information (PI) [7,10,11]. This formalization of

definitions precludes the prevailing confusion of informational terms in the literature.

The more specific and accurate term “Prescriptive Information (PI)” has been cham-

pioned by Abel [12-16] to define the sources and nature of programming controls, reg-

ulation and algorithmic processing. Such prescriptions are ubiquitously instantiated

into all known living cells [13]. PI either instructs or produces formal function [12] in

such a way as to organize and institute a prescribed set of logic-gate programming

choices. Without such steering of physicochemical interactions by “Choice-Contingent

Causation and Control” (CCCC) [17-19], metabolic pathways and cycles would be

impossible to integrate into a cooperative and holistic metabolism. The Organization

(O) Principle [19] states that nontrivial formal organization can only be produced by

CCCC.

Maynard Smith [20] argued that bioinformation is both specific and intentional.

Maynard Smith also pointed out in this same paper the irreversibility of information

transfer. Information moves only from signal to response, not in the reverse direction.

He argued that genetic information implies the possibility of misinterpretation or

error. Maynard Smith also considered genetic information to be undetermined by

cause-and-effect necessity. But he considered genetic information to be gratuitous (not

called for by the circumstances: unwarranted) [20].

Jablonka [21] argues that life is dependent upon semantic information, and that

Shannon “information” is insufficient to explain life. She emphasizes, as does Adami

[22], the importance of “aboutness.” Aboutness relates to meaning which in biology

relates to biofunction.

Jablonka [21] also argues that semantic information can only exist with living or

designed systems. “Only a living system can make a source into an informational

input.” On page 588 Jablonka emphasizes the function of bioinformation. Thus the

joint authors of this paper are not alone in our emphasis on the formal nature of life’s

many control mechanisms.

A closer examination of Prescriptive Information (PI) has led to a dichotomy in its

definition to differentiate between 1) what are prescribed data, and 2) what are pre-

scribed algorithms. As the concepts of computer science are applied to the cell, it is

necessary to deconstruct information structures to identify and differentiate data from

algorithms. The DNA polynucleotide molecule consists of a linear sequence of nucleo-

tides, each representing a biological placeholder of adenine (A), cytosine (C), thymine

(T) and guanine (G). This quaternary system is analogous to the base two binary

scheme native to computational systems. As such, the polynucleotide sequence repre-

sents the lowest level of coded information expressed as a form of machine code.

Since machine code (and/or micro code) is the lowest form of compiled computer pro-

grams, it represents the most primitive level of programming language. Typical

machine code consists of single instructions which are interpreted by the microproces-

sor in a linear sequential program flow. In this form it is not apparent as to how to

identify algorithms and data structures easily seen in higher level programming lan-

guages such as BASIC, LISP, FORTRAN and C. This is because binary machine code

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 2 of 24

is a comma-less string of ones and zeros which mimics the comma-less sequence of

quaternary placeholders that constitute the genome. The absence of higher level struc-

ture and visibility of interpretive language found in higher level programming formats

makes the read-ability and identification of algorithmic and data structures difficult to

the reader. Examination of the genomic literature offers some clues in de-ciphering

this biological machine code in terms of differentiating data from algorithms. Allowing

for the breakdown of PI into its constituent components may permit the identification

of models that better explain the structure and process of information systems within

the cell. An understanding of algorithms will be defined from a computer science per-

spective due to the discrete nature of cellular systems and operations. This is in part

due to the cell’s primary centralized genetic information source defined as DNA, con-

sisting of both instructions and data, represented as a quadruple discrete code. Each

nucleotide token can be defined as either a formal state of physicality or of abstract

space.

Each Shannon bit of uncertainty represents a binary choice opportunity, not a speci-

fic choice. Shannon’s famous H equation (equation 1) clearly shows that a “bit” is

nothing more than the log of a probability distribution.

H =
M∑

i=1
pi(−log2pi) (1)

There are no specific choices to be found anywhere within this mathematical defini-

tion of a “bit.” Shannon worked only on general communication engineering problems.

He deliberately made no attempt to quantify intuitive/semantic information by measur-

ing specific functional choices with fixed units. That would be impossible.

In computer science, bits are used to measure the number of binary choice place-

holders in a potential digital prescriptive informational (programming) string. Even

after a program is written, “bits” refer only to the total number of binary choices the

program contains. Under no circumstances do “bits” identify a particular binary choice.

When we move from negative bits of uncertainty to a positive specific enumeration

of particular functional choices, that is when Functional Information (FI), and its two

subsets, Descriptive Information (DI) and Prescriptive Information (PI) are introduced

[19].

Since each potential nucleotide selection represents one of four possible states that

could be selected, two bits defined as a Dual bit (Dbit) of uncertainty exist just prior to

each nucleotide selection at each locus in the growing biopolymeric string of potential

“choices.”

When a functional choice of a nucleotide is actually made, however, the polymeriza-

tion of each prescriptive nucleotide into a programmed “messenger molecule” instanti-

ates a quaternary programming choice into that syntax [12,13,23]. Each such

nucleotide choice in a highly conserved gene syntax, for example, can be measured as

two biological Functional bits ("Fits”) of Functional Sequence Complexity (FSC)

[24-26]. Two “Fits” of FSC have been formally prescribed and instantiated into that

gene or edited, mature mRNA that contributes to a specified metabolic function

[25,26].

The measure of FSC using “Fits” is not identical to the measure of Prescriptive Infor-

mation (PI) in a program or message. The calculation of Fits, when working with

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 3 of 24

proteins, for example, employs the total number of protein family members out of

sequence space that display any degree of that family’s biofunction. Fits do not address

the degree of functionality (e.g., the catalytic constant) of any one protein in that

family. But fits come the closest to measuring the functional uncertainty of a linear

digital functional string out of sequence space of any measurement in the literature

[25].

Since each nucleotide placeholder can accept one of four possible states, it comprises a

logical base 4 system. (To be fully correct, we would have to include cytosine methyla-

tion as the source of an additional configurable switch-setting option, and other non-

biological bases, including non-right-handed sugar nucleotides, in the alphabet of possi-

ble tokens that could theoretically polymerize onto a prebiotic string. But for simplicity

at the moment, we will just think in terms of the four main biological nucleotides.) This

four-state quaternary placeholder is directly analogous to the two-state binary place-

holder in artificial computer systems defined as a bit. To distinguish the quaternary bio-

logical placeholder from the binary placeholder, we define the four-state biological

placeholder as a Dbit (Dual bit) placeholder. The term Dbit is used to better define the

differences between the biological unit from the computer unit. This kind of unitization

is also seen in other fields such as quantum computing known as the Qubit. The Qubit

is defined to distinguish the quantum bit from the classical computing bit.

Bit operations, whether logical, mathematical or informational, are well understood

in the field of computer science, offering a rich knowledge base from which to analyze

such systems. Since cell operations are dependent on Dbit recognition and consecutive

step by step operations such as DNA copying processes (no new information is gener-

ated in DNA copying), mRNA editing, digital computation, protein synthesis and many

more processes, these functions provide the justification to define algorithms and data

from a computer science perspective. Therefore, we will define an algorithm as a set of

rules and/or a step-wise procedure that precisely defines a finite sequence of opera-

tions [27]. We will discuss this in more detail in the algorithm section.

In order to differentiate between data and algorithms as it pertains to the DNA/RNA

world, it is pertinent to examine languages [14], which may aid in the identification of

linguistic structures as it applies to algorithms and data. This claim is supported as it

relates to the computer science field of Automata Theory. Automata Theory, concerns

itself with the mathematical modeling of computing functions [28] and identification

of abstract languages or rules [29]. It has also been used recently in biological and bio-

medical systems such as autonomous DNA models, DNA sequence reconstruction and

cellular level interactions [30-32]. Computing machines are modeled as mathematical

abstractions, which in many ways are equivalent to real computers and programming

languages [28]. These computing machines are called automata. Automata theory is

also related to formal language theory.

Automata can recognize a class of formal languages given any automata or machine

M that operates on symbolic characters from a given alphabet to produce language

“L”. This gives us a formal way to evaluate and understand machine-like operations.

Automata Theory sets the precedence for applying formal language theory to modeling

computing machine systems. Such computational systems are dependent upon some

type of operating language, and as such, may be applicable in modeling similar biologi-

cal systems. For example, automata theory has been used to model the DNA as a one

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 4 of 24

dimensional cellular automaton with four states defined by its four bases [31]. This

machine was evaluated to determine rules that could influence its history. We argue

that the linguistic analogy for machines is not purely heuristic [14], but is necessary

for physical machinery to perform computational tasks. An interesting question

becomes, “Does the cell solve biological problems by equivalent methods and princi-

ples as electronic computers solve problems?”

Examination of the syntax, semantics and semiotic mechanics of linguistics has

served as an abstract template when searching for similar structure in the DNA/RNA

world. The field of DNA linguistics has focused on computational linguistics and mole-

cular biology. Such efforts have contributed to developing a logic grammar formalism

that has been used to perform language processing and recognition of DNA sequences

such as E. coli promoters [33]. We posit that linguistic structure coupled with algo-

rithm methodologies helps us to understand the difference between data and algo-

rithms in the DNA/RNA world.

In order to have information transfer between two abstract spaces, there must exist a

form of language that is common to each. Using concepts from automata theory as the

basis of formal language, we define the following terms:

1) Symbol–an abstract placeholder with arbitrary meaning. ("Physical symbol vehi-

cles” such as nucleotides, are called tokens).

2) Alphabet–a finite set of symbols in set Ωdna. (Ex. DNA nucleotides A, C, T and G)

3) Word (w)–A finite string of symbols from a given alphabet in set ∑dna that has

semantic meaning (effects or affects bio-function).

4) Language (L)–A string of words from a given alphabet. w Î ∑dna

Language provides a protocol that has contingency and use of grammar. By grammar

we mean a set of rules governing use of symbols in an effort to render symbol strings

meaningful. In language, alphanumeric characters are chosen by a set of arbitrary rules

such as the letter u following the letter q used in English words [23]. The language

used in computing machines has been shown by Chomsky [34,35] to extend the idea

of complexity hierarchy to formalized language hierarchy found in automata theory.

This concept has led to the development of a formal grammar defined for computing

purposes. Using grammar automata with just a few symbols and rules can produce a

variety of complex languages. The transfer of information from the genome to the

ribosome can be modeled using language embedded in the structure and organization

of DNA/RNA and amino acids. For example, the grammatical structure of codons can

be represented by the set of production rules as illustrated below:

1) S ® TAA | TGA | TAG (= stop codon)

2) MMM ® XXX where XXX are three arbitrary selections of the genetic DNA

alphabet consisting of the letters A, C, G and T

3) S ® MMMS where S is a string function that follows the rule S = the current

value of MMM followed by the previous string content for S.

We execute the above rules in the following order:

Rule 1, Rule 2, Rule3, Rule2, Rule3

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 5 of 24

Rule 1 sets S equal to the stop codon string, e.g. TAA. Applying rule 2 sets MMM as

any arbitrary three nucleotide selection of the genetic alphabet such as ACT or TGA,

etc where X is a placeholder for an arbitrary nucleotide. Next we apply rule 3 which

forms string S as S= MMMS = XXXTAA. Next we apply rule 2 again which creates

another arbitrary set of codon of A’s, C’s T’s and G’s such that MMM = (XXX)1.

Applying rule 3 again forms the string

S = (XXX)1XXXTAA. Repeating rules 2&3 produce the string

S = (XXX)2(XXX)1XXXTAA

In general this grammatical rule produces a gene of arbitrary length n as

(XXX)n(XXX)n - 1 · · · (XXX)2(XXX)1XXXTAA

This produces a language of genes (L) relative to the genome language LG. which can

be represented as

L = {{(XXX)n · · · (stop codon)} · ··} (2)

Each codon may be representative of either exons or introns. The information in

equation 2 and the production rules now describe at a minimum, a subset language of

genome (LG) expressing the coding sequence of genes.

This set of rules is by no means complete with regards to describing all of the biolo-

gic function within the genome. The authors freely acknowledge the naiveté of this

model with respect to the innumerable additional dimensions of PI and layers of sup-

plemental processing that have recently come to light in molecular biology. Neverthe-

less, it is necessary to begin the cybernetic comparison with linear digital prescription

and the other linguistic-like parallels. For example, there would be additional rules and

grammar that define the necessary conditions in the form of consensus sequences that

define boundaries between introns and exons. Other examples include genetic recom-

bination, transposons, translocation and other genetic variations. In addition, other

rules that define gene regulation, DNA repair and alternative splicing are further exam-

ples of the complex language that makes up the genome. But this only emphasizes the

formal nature of life’s cybernetic prowess, and reinforces our point, that the linguistic-

like effects could be defined by new production rules controlled by the proper gram-

matical syntax, thus expanding the genome language.

In terms of the genetic information contained within a gene, each codon selection is

an occurrence of PI, since the sequential order of nucleotides, and then codons, is

necessary for protein construction.

Information can be transferred from source to destination via an agreed-upon set of

rules, and a language acted upon by algorithms. Each letter in the sentence “The glass

contains water” is formally selected as a symbol from one of 26 alphabetical characters

plus space. Each letter selection generates a simple form of Prescriptive Information

(PI) as each letter contributes to forming a finite string of symbols, characterized as

words having semantic meaning. PI is inherent in the selection of each letter from

among 26 options even prior to the selection of words and word syntax. In both lan-

guage and molecular biology synonyms occur where different letter selections can spell

different words with the same semantic meaning. Sentence construction begins with

letter selection. If a letter adds no significant meaning either to a word or to the

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 6 of 24

contextual meaning of the sentence of which it is part, then that letter is not PI. Both

letters in a word and nucleotides in the genome function as physical symbol vehicles

(tokens) in a material symbol system (MSS) [23] and are forms of formal (non-physi-

cal) PI instantiation into physicality [24].

The question becomes, are the words “the,” “glass,” “contains,” and “water” algo-

rithms or data? Each word is composed of a linear sequence of symbols in the form of

letters, which collectively transfer a greater meaning than the individual meaning of

each character. This transfer is accomplished by defining semantic meaning to a pre-

scribed sequence of letters the intent of which is to map meaning to an arbitrary

sequence of tokens. This mapping is arbitrary as evidenced by the multitude of lan-

guages that exist in our world, each language mapping “meaning” to a multitude of

arbitrary sequences of symbols or tokens, be it letters, shapes or pictures. This semiotic

relationship transfers into biocybernetics and biosemiotics when viewed from the bio-

logical realm [36]. Since words are placeholders for an arbitrary mapping of “semantic

meaning,” they by themselves cannot perform or coherently instruct functionality with-

out being combined in some structurally grammatical sentence. This deductively shows

that words are not algorithms. Perhaps a demonstration of this is that one can find

“words” in Scrabble pieces that are lined up randomly and turned over. But the strings

are still random. The only thing that creates words out of these random strings is our

minds algorithmically finding associations between letters based on language rules

completely independent of the random sequences of Scrabble piece (token) letters.

Individual words have specific meanings. For instance the word “glass” means the

material glass, but also has meaning in a general sense since it could refer to a drink-

ing glass, window glass, etc. Some words can have multiple meanings depending on

the sense in which they appear in context. For example the word “mean” could be

interpreted as selfish or cruel or as another name for a mathematical average depend-

ing on its use in a sentence. As such, no individual words communicate information

greater than itself. Since words can have ambiguous meanings, their meaning may be

further dependent upon the structure of the sentence that they appear in. By structure,

we mean the set of grammatical rules that define the construction of a sentence.

Sentences can be instructive since they contain two important properties. First they

organize a thought instantiated through a collection of chosen letters and words to

produce a product or function greater than the individual letters and words contained

within them. Thus the sentence “The glass contains water” conveys the message of a

glass vessel of arbitrary size containing an unknown amount of water. The more wisely

chosen words we add, the more specific and possibly efficacious the message becomes.

The purposeful addition of words to a sentence conveys more information as evi-

denced by the addition of detailed information contained in the sentence “The five

ounce glass is filled with water.” Secondly, by their own structure they have built in

contingency that allows the outcome of their meaning to improve via the strategic pla-

cement of words.

Genomic Information

In a gene, each nucleotide is a discrete 4 state configurable switch that can be repre-

sented using a material symbol system. The symbols A, G, T and C can be used to

represent the string of quaternary (4-way) switch-settings found in a positive

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 7 of 24

informational DNA single strand as discussed above. Highly conserved reference

sequences represent discrete linear digital programming choices [12,13,23-25]. Each

choice of symbol is made from an alphabet of four possible characters. This corre-

sponds to a selection of each nucleoside from a space of four possible tokens. We

emphasize again, that within a gene, nucleotides thus function as a physical symbol

vehicle in a material symbol system [12,37,38]. From the perspective of the genome

machinery, the nucleotides are a comma-less string of alphabetical characters. This is

analogous to the discrete string of ones and zeros of magnetized regions on the com-

puter hard drive.

From the perspective of protein synthesis machinery, the alphabet of nucleotides

contained in the mature mRNA is read using the grammatical rule of organizing con-

secutive sets of 3 nucleotides in the form of triplet codons as illustrated above. A

codon results in a 4-letter DNA alphabet translated to the twenty-letter alphabet in the

protein space, letter for letter. Each codon is a Hamming block code consisting of

three individual quaternary (four-way-knob) switch settings [24,39]. This Hamming

redundancy code feature builds in noise-reduction properties allowing codons to

become a more robust symbolic representation of each amino acid in protein space.

Each codon is now defined as one of 61 arbitrary symbols mapped to the 20 amino

acids constituting the protein space £. In addition there are three stop commands used

for both the translation and transcription process. Within Ωdna is a finite space of

codon block code symbols in the domain of the DNA language. These block code sym-

bols are mapped to new letters in the protein alphabet (Ωprotein) residing in protein

language £. The reference frame (DNA/RNA or Protein) determines whether codons

are considered to be words or letters. From the perspective of protein space, a codon

is not a word, but a redundancy block code symbolizing each letter in the language of

protein space. Each protein, like many words in the German language, is a very long

word with many letters.

The confusion comes from translating an alphabet of 4 letters in the DNA/RNA lan-

guage to an alphabet of 20 letters in the protein language. In this sense the triplet

codons are not words, but schemas that incorporate Hamming redundancy block

codes allowing protection against information loss in the Shannon channel. However,

in the DNA world there are the equivalents of words composed from the 4 letter

alphabet that have semantic meaning to the DNA machinery. For example, the three-

letter codon TAA is equated to the word “stop”. TAA, TGA and TAG are written in

genome language (DNA language) and interpreted as stop or halt commands while

UAA, UGA and UAG are equivalent commands in protein/RNA language as used in

the protein/RNA machinery of the ribosome. Notice that you couldn’t use the indivi-

dual letters A, C, T, or G to represent individual functions like we do with the letters

C and H on the faucet for Cold and Hot, without some similar icon that has a built in

semantic meaning from which an interpretation could be surmised. PI is also inherent

in one-letter selections like “H” and “C” on faucet handles, or “X” marks the spot on a

map as they are context specific.

Abnormal translation termination is another example of a grammatical rule imposed

upon the genome to minimize the loss of, or insertion of a base pair into an ORF

(open reading frame) resulting in frame shift mutations (FSM). The immediate impact

of a FSM is that they will code for incorrect amino acids costing the cell time, energy

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 8 of 24

and raw material which could potentially produce toxic proteins. Interestingly, stop

codons are distributed among the most common amino acids throughout the ORF due

to a single frame shift. These overlapping sequences can be seen in the following

example of a minus-one frame shift NNT | GAN (where N denotes any base pair and

represents the comma-less break between codons). Notice that NNT and GAN could

code Tyrosine and Glutamic acid respectively. The resultant minus-one frame shift

produces the stop codon UAG (TAG) causing the ribosome to halt its protein con-

struction. Imposing this grammatical rule that halt commands (in one of the three

forms cited above) be inserted into every gene ensures that if a FSM occurs, the prob-

able multiplicity of encrypted halt signs assists in preventing incorrect proteins from

being synthesized. Less obvious is the fact that potential stop codons present during a

FSM, are not seen in genes that exhibit no frame shift mutations. They are inconspicu-

ous within the normal context of gene expression and yet become viable during erro-

neous FSM expressions without prematurely terminating non FSM codonic regions.

This shows that the genetic code, in part, is constructed to lessen the impact of frame-

shift errors due to the strategic use of grammatical rules. Thus the triplet configura-

tions of codons in the ORF’s buffer against, out of register protein synthesis due to

frame shift errors.

There are many more examples of RNA words composed of many DNA/RNA letters

that have meaning in the microRNA regulation process and identification of gene sec-

tions and organization.

Language Mappings

Essentially, we propose the language of DNA domain (L) is mapped to the target space

£ by:

L
M−→ £ whereM is the mapping from DNA space to transcribed RNA space

(mRNA) to protein space via the maping in the form of tRNA.

However M can be decomposed into mapping b between DNA and pre-mRNA,

mapping Đ between pre-mRNA and mature mRNA via alternative splicing and δ map-

ping mRNA into amino acids in the form of tRNA such that:

L
M−→ £ = L(DNA)

β−→ (pre) mRNA and (pre) mRNA
-D−→ (mature) mRNA and

(mature) mRNA
δ−→ £(protein); where δ is the mapping in the form of tRNA.

It is interesting to note, a codon within a gene does not by itself produce the final

protein. It does have individual formal meaning instantiated into its physical sequence.

A gene or microRNA functions as a physical symbol vehicle syntax representing a

string of choices [24]. As such, the linear digital sequence of codons is a form of PI

[23,24]. Each codon transmits meaningful information which upon translation, can be

equivocated to an arbitrary “letter” (in protein space) [12,40]. However, as a single let-

ter it does not contain the equivalent meaning found in the language context of a

word [24,39].

Once the rules or mappings are instantiated into physicality, then the physical codon

sequence could potentially become a physical cause. Physicodynamic determinism is

not the only kind of determinism. Choice-Contingent Causation and Control (CCCC)

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 9 of 24

[19]) is also a valid form of determinism that can get instantiated into physicality. But,

as we shall see, the process of translation is still not physicodynamically determined.

Only formal algorithmic processing can bring about the process of translation within

ribosomes.

Of course, grammatical rules used in protein synthesis are needed to interpret the

nucleotide sequence and codon sequence within the genes of the DNA strand. Formal

grammatical rules are a condition necessary for biofunction imposed on the genetic

code. But note that this fact is not the result of any physicodynamic constraint. Obedi-

ence to these rules is not accomplished by cause-and-effect physicodynamic determin-

ism. It is not “necessary” in the sense of physical law. It is necessary only in the sense

that if the formal behavioral rules are disobeyed, formal functionality will be lost. Life

chooses to obey the rules in order to survive. No physical law forces life to be alive.

It is only after edited mRNA is algorithmically processed in the ribosome–only after

translation into polyamino acid sequence is complete, that cause-and-effect physicody-

namic determinism becomes active or reigns. Only then does the sequence of R groups

in amino acids largely determine thermodynamically the protein’s folding into func-

tional three-dimensional tertiary shapes. The rigidly-bound sequence of amino acids

that was formally prescribed by CCCC determinism is the prime determinant of what

the average minimum-Gibbs-free-energy sinks will be for that protein. How the globule

forms in turn determines what bio-function will be produced. But this is only the final

step (excluding for the moment the role of RNA and protein chaperones, which are

themselves determined largely by CCCC). It is likely that even more formal controls of

folding will be discovered. Models employing purely physicodynamic constraints have

been very disappointing in predicting how proteins will fold. Most of the process of

ribosomal protein manufacture is purely formal programming and algorithmic

processing.

The language of the cell is posited to be formed by the set of words equivocated as

proteins and RNAs. In the language of the ribosome, each codon is a symbol repre-

senting a letter of the amino acid alphabet ∑protein. The choice of symbolic representa-

tion is arbitrary as seen by various mappings of codon/amino acid groups such as in

human mitochondria and other examples such as the codon UGA as tryptophan in the

Mycoplasma species [41,42]. The successful summation of all the amino acids specified

by a given mature mRNA form a word in protein space. Protein space is defined as

the space of all functioning proteins [43]. The arrangement of such words is used to

form bio-machinery, transduction circuitry and bio-signals used by the cell to commu-

nicate both internally and externally to its environment to sustain metabolic opera-

tions. The edited sequence of codons in mature mRNA largely prescribes not only the

primary structure of the protein but also its secondary and tertiary (3D shape) struc-

ture[12], coupled with the assistance of other independently prescribed chaperone pro-

teins. Each protein encoded in its associated gene is equivalent to a word of specific

meaning [23,39] in protein space. Meaning is contained first in the prescribed amino

acid sequence. The sequence of specific R groups determines the minimum-free-energy

folding of the protein. Thus the prescribed sequencing blossoms into deeper layers of

meaning. In molecular biological messages, “meaning” translates into successful

“biofunction.”

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 10 of 24

The functional sequencing of nucleotides in initial positive single nucleic acid strands

is physicodynamically indeterminate (inert, decoupled from cause-and-effect determin-

ism) [7,13,17,23,24,44-46]

All chemical bonds between nucleotides are identical 3’5’-phosphodiester bonds. Phy-

sicochemical factors cannot explain codon sequencing in single positive strands of

DNA. Codon sequencing is formal, as is the editing of DNA transcriptions that pro-

duces mature mRNA. What does “formal” mean? Most of us would readily agree that

language, mathematics, programming, and logic theory are all formalisms. But, do we

understand why? The essential component of any formalism is the exercise of choice

contingency, not chance contingency or necessity (law-like cause-and-effect determin-

ism) [7,19,23]. Formalisms invariably employ purposeful choices and typically represent

them using mathematical (e.g., 0 vs. 1 for binary decisions) or letter and word symbols

for language. Each configurable switch-setting can be represented by a formal “on” vs.

“off,” “Yes” vs. “No,” or “Open” vs. “Closed.” Inanimate physicodynamics cannot make

purposeful choices or participate in representationalism.

Symbol systems are governed by arbitrary rules, not laws. The rule could just as

easily be that “1” represents “Closed” rather than “Open.” Laws describe the invariant

deterministic behavior of inanimate nature. Rules can be readily broken, and govern

voluntary, choice-contingent behavior. All formalisms arise out of uncoerced choices in

the pursuit of function and utility [7].

We propose that both the method used to combine several genes together to pro-

duce a molecular machine and the operational logic of the machine are examples of an

algorithm which we will expand upon later. Molecular machines are a product of sev-

eral polycodon instruction sets (genes) and may be operated upon algorithmically. But

what process determines what algorithm to execute?

In addition to algorithm execution, there needs to be an assembly algorithm. Any

manufacturing engineer knows that nothing (in production) is built without plans that

precisely define orders of operations to properly and economically assemble compo-

nents to build a machine or product. There must be by necessity, an order of opera-

tions to construct biological machines. This is because biological machines are neither

chaotic nor random, but are functionally coherent assemblies of proteins/RNA ele-

ments. A set of operations that govern the construction of such assemblies may exist

as an algorithm which we need to discover. It details real biological processes that are

operated upon by a set of rules that define the construction of biological elements

both in a temporal and physical assembly sequence manner. Small RNA’s, peptides,

short polypeptides, even other regulatory proteins can regulate genetic expression.

Therefore codon syntax is only part of the PI that organizes and manages cellular

metabolism. Sometimes non codonic nucleotide sequencing or even short polyamino

acid sequencing (peptides sometimes have regulatory function) can be prescriptive.

In digital systems, algorithms are parts of software routines either embedded or

called up in a program. In continuous systems, algorithms are analog in nature whose

physical realization happens through the specific configuration of electrical circuits or

mechanical assemblies. In the cell environment, we would propose that these algo-

rithms are deductively called by a higher level of organization, possibly via software

control or wet-wired as part of some type of automated control process. The rules that

define an algorithm do not execute the algorithm. Something else does the operating

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 11 of 24

according to a set of rules defined within the environment of which it operates. This is

analogous to deciding what paragraphs in an instruction manual to read or when a

specific algorithm is executed in the windows operating system. The action of when

and what to read is accomplished by mechanisms outside the contents of the pre-

scribed paragraphs/sentences or algorithm itself. Each sentence is composed of an

arrangement of words, where each word is a physical symbol. But physical symbols are

not algorithms. At best they may be a single instruction such as the word “stop”. To

get an algorithm, one would need to string together these symbols like what is done in

the Chinese language. Just one “fit” contributes toward “instruction” and is PI, even

though it’s only one functional binary choice. Technically, one could have a program

consisting of only one decision node purposeful choice. This would measure out to be

one “fit” of FSC, or FI [25,26], assuming the bit marker provides opportunity for one

functional binary programming decision to be recorded there.

Algorithms

In order to determine if algorithms exist in biological systems, we need to define what

an algorithm is. There are many definitions to describe algorithms. We choose to limit

these definitions to those that most closely describe the algorithms used in computer

science as defined in the background section above. We emphasize that this approach

is justified by the analogous relationship that exists between a) computer functions,

logic and code to b) linear discrete states and genetic code [10-12,14] that define biolo-

gical systems seen in the DNA/RNA environment. An Algorithm is a set of rules or

procedures that precisely defines a finite sequence of operations [27]. An algorithm

starts with an input, initial state and produces an output [47]. Biological machines

such as the ribosome input already algorithmically edited mRNA (PI) to operate upon,

however an algorithm like a digital filter can have as its input, physical data, the nature

of which may be some measured response from physicality (non PI). An algorithm can

input either kind of data. These instructions prescribe a computation or action that,

when executed, will proceed through a finite number of well-defined states either suc-

cessively or recursively that leads to specific outcomes [47,48]. Most algorithms termi-

nate at some final state but may also continuously loop producing outputs, as long as

the system in which it resides is active. In this context an algorithm can be represented

as: Algorithm = logic + control; where the logic component expresses rules, operations,

axioms and coherent instructions. These instructions may be used in the computation

and control, while decision-making components determines the way in which deduc-

tion is applied to the axioms[49] according to the rules as it applies to instructions.

In order to illustrate biological algorithms, we propose an algorithm representing the

well-documented ribosome. A ribosome is a biological machine consisting of nearly

200 proteins (assembly factors) that assist in assembly operations, along with 4 RNA

molecules and 78 ribosomal proteins that compose a mature ribosome [50]. This com-

plex of proteins and RNAs collectively produce a new function that is greater than the

individual functionality of proteins and RNAs that compose it. The DNA (source data),

RNA (edited mRNA), large and small RNA components of ribosomal RNA, ribosomal

protein, tRNA, aminoacyl-tRNA synthetase enzymes, and “manufactured” protein

(ribosome output) are part of this one way, irreversible bridge contained in the central

dogma of molecular biology [51] as shown in Figure 1 below.

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 12 of 24

The reason for the Central Dogma is ultimately mathematical, as Hubert Yockey

points out [39]. The principle is not unique to molecular biology. The irreversible

bridge of the Central Dogma is consistent with the one-way Configurable Switch (CS)

Bridge that traverses the Cybernetic Cut [5,13,23] Formalisms’ only access into physi-

cality is to cross the CS Bridge from the far (formal) side of The Cybernetic Cut to the

near (physical) side. Mathematically, there is no way to know from an amino acid

alone which of the redundant codons prescribed that amino acid. There is always less

information in a 20 character alphabet symbol system than in the 61 character alpha-

bet symbol system from which it was 3:1 surjected with redundancy coding. Informa-

tion is lost, the same as when we are only given the total sum from the roll of a pair

of dice rather than the specific number on each die that was thrown. Information is

always lost in codon to amino acid translation, never gained.

We propose that the ribosome be considered a builder of new three-dimensional

meta-shapes through polymerizing each additional amino acid token shape, as opposed

to adding numeric values. This summation of the monomeric sequence is not a one-

dimensional object (sign and magnitude) as in computer space, but a sum projecting

into real three-dimensional space (shape space).

This protein contains less linear digital PI than in the mRNA/gene polycodon. The

reason is that the polyamino acid string does not tell us which of the redundant

codons prescribed each amino acid. That information is lost in the process. Some

might argue that the Gibbs free energy sinks that come into play after the R group

sequence of the polyamino acid sequence (the protein’s primary structure) is estab-

lished creates new dimensions of PI not prescribed by the linear digital prescription of

the mature mRNA.

This perspective is hard to defend, however, since thermodynamics and an inanimate

environment cannot make programming choices at decision nodes required to generate

new PI. Choice-Contingent Causation and Control (CCCC) is essential to generate new

PI [19].

One of the greatest enigmas of molecular biology is how codonic linear digital pro-

gramming is not only able to anticipate what the Gibbs free energy folding will be, but

it actually prescribes that eventual folding through its sequencing of amino acids.

Much the same as a human engineer, the nonphysical, formal PI instantiated into lin-

ear digital codon prescription makes use of physical realities like thermodynamics to

produce the needed globular molecular machines.

We hypothesize that the functional operation of the ribosome consists of logical

structures and control that obeys the rules for an algorithm. The simplest element of

logical structure in an algorithm is a linear sequence. A linear sequence consists of one

instruction or datum, followed immediately by another as is evident in the linear

arrangement of codons that make up the genes of the DNA. Branching control or

Figure 1 Protein (peptide sequence).

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 13 of 24

routines are another form of logical structure. Branching allows control of the execu-

tion routine to jump to a different part of the algorithm. Other logical structures such

as conditional control direct the execution of the algorithm’s flow based on a set of

variables meeting some condition or rule. This means that the linear sequential execu-

tion of the algorithm is broken and the execution path is branched to some other

instruction or continues in its original path dependent on how the condition is evalu-

ated. The actions of the spliceosome can be thought of branching away from the linear

sequence of codons when it detects introns which are then cut out.

In computer systems, transistor circuits are configured to form logical gates. The

arrangement of transistors and their resulting functions, prescribe an instantiation of

PI into physicality [7,10-12,46,52,53]. Both logic and functionality are non physical

formalisms. Both can be instantiated into physicality using logic (electrical/optical) gate

settings. Instantiation means the programming of non physical formal choices into

physicality. This is usually accomplished through the formal setting of physical config-

urable switches, the selection of physical symbol vehicles (tokens) from an alphabet of

physical tokens (e.g., Scrabble pieces), or through the choice-contingent integration

and organization of component physical parts into holistic devices and machines [17].

DNA bases are physical tokens. They can be formally arranged into functional linear

digital sequences of Dbit (dual bit based quaternary decision node) instructions. The

resulting syntax of tokens is a form of instantiation of formal prescription into physi-

cality provided that algorithmic processing is also prescribed. Upon algorithmic proces-

sing, logical organic circuits are arranged and assembled using genetic engineering.

The set of rules governing programming choices must obey the three classic laws of

logical thought shown below if formal function is to be expected. As in the case of

computer circuits, this does not preclude physical law determinism within the electrical

switch environment. But physical law determinism alone has never been observed to

generate non trivial formal pragmatism. Expedient thought obeys the “law” (technically

a rule) of non contradiction, i.e., it is not possible for something to be true and not

true at the same time and in the same sense. The statements that describe the func-

tionality of the ribosome in the proposed algorithm of Figure 2 obey this rule of logical

inference as well as the identity rule prohibiting Excluded Middle [54].

Ribosome Algorithm

Biological systems and their development have made use of the theory of algorithms

and computability (Automata and Biology). Part of algorithmic theory deals with gen-

eral principles of operation and structure of automata [55]. We have chosen to analyze

the behavior of the ribosome mechanism without regard to ways in which this

mechanism is realized. The basic relations that govern the ways in which ribosomes’

operate can be described with rules and logic. The basic ways in which finite state

automata process information can be exhibited in certain biological machines such as

the ribosome in order to extract behaviors and computability [29].

The primary function of the ribosome can be described at the top level as three main

functions defined as Initiation, Elongation and Termination [56]. Examination of the

ribosome functionality is captured and modeled in the proposed algorithmic function

(at a minimum) shown in the flow chart of Figure 2. The ribosome algorithm (R-algo-

rithm) is composed of a logical sequence of commands and decision-nodes choices.

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 14 of 24

These programming decisions mimic a discrete program, acting upon inputs such as

tRNAs, aminoacyl-tRNA synthetase enzymes and mRNA while producing outputs

including empty tRNAs (de-acylated tRNA) and proteins. Each block shown in the

flow chart of figure 2 may be instantiated into the product structures of proteins and

RNA’s selectively and cybernetically. The blocks are sequence-dependent to achieve

logical functions. What is not shown is the need for different, independent aminoacyl-

tRNA synthetase enzymes which must all be there for the ribosome to produce any

protein. Close examination of the algorithm in figure 2 shows that the mRNA (which

is itself a product of the gene copy and editor subroutine) [57] is a necessary input

which is formatted by grammatical rules as discussed previously enabling the proposed

ribosome algorithm to successfully execute, producing a requested protein. The mRNA

Figure 2 Proposed Ribosome Algorithm.

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 15 of 24

attaches to the small subunit of the ribosome followed by both the recognition and

attachment of the initiator tRNA to the start codon (usually AUG) of the mRNA

located in the “P” site of the ribosome. This is followed by the docking of the large

subunit of the ribosome, along with participating initiation factors to form the com-

plete ribosome [15]. These steps are captured in the initiation section of the R-algo-

rithm. The ribosome contains three ports designated “A”, “P” and “E”. The input tRNA

is contained in the “A” port or data site, where it is checked to see if its anticodon

tRNA matches the mRNA data codon [58]. The P site contains the previous tRNA

along with the growing amino acid chain, while the E port contains de-acylated tRNA

that preceded the tRNA in P port. The action of comparing the anticodon tRNA with

the current selected mRNA codon in the “A” port reading frame represents a decision

node. It’s what precedes this final bonding that requires the instantiation of a great

deal of PI within the system–the physicodynamically inert (indeterminate) sequencing

of codons, the linking up of the correct amino acid with the correct tRNA for the

codon-anticodon system to work, the specificity of each amino-acyl tRNA synthetase,

etc. A contrived system must exist to instantiate the decision and action process

detailed in the R-algorithm whose comparative result redirects the algorithm flow to

either be an iterative action or continue to the next successive step. This is a cyber-

netic process. The next successive step is also a decision node whose comparative

result either halts the program or continues to the next successive step based on the

detection of the stop codon, again, another cybernetic decision affecting the execution

vector of the program flow. Upon successful matching of codon to anticodon in the

“A” port, the amino acid chain from the nascent tRNA in the “P” port is added to the

amino acid in the “A” port which is modeled as:

AAportA = AAportP + AAportA (3)

where AAportA is the current amino acid in Port A

AAportP is the amino acid chain in port P including the initial condition normally

defined as amino acid methionine from the initiator tRNA representing the start

codon.

The completion of amino acid addition is followed by what we perceive as cybernetic

action of advancing the mRNA input via three discrete steps by mechanically ratchet-

ing the ribosome along the mRNA track [59]. Details of this mechanical action are a

little fuzzy but can be modeled with descriptive logical statements as shown in Figure

2. The current states of the machine shows that empty tRNA in port E is expelled out

of the machine, the contents of port P are translocated into Port E and amino acid

chain of current tRNA in port A is translocated into port P. Notice that the R-algo-

rithm will output any sequence combination or any syntax of amino acids as encoded

in the mRNA present at its input port, regardless of whether the encoded amino acids

produce a functional or non functional protein. In our view the ribosome is a machine

that executes a sequence of discrete instructions operating upon a set of arbitrary dis-

crete codon packages (PI data) producing a protein product as its output. The machine

can produce any variation of protein product by simply changing the syntax of both

the tRNA (anti-codon/amino acid map) and the DNA codons. This property allows the

R-Algorithm to universally produce any linear amino acid sequence product. The

machine also makes calls to local memory defined as tRNAs. The tRNAs are necessary

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 16 of 24

to implement the logical structure of the “conditional control” decision node. The tem-

porary storage of the forming amino acid chain is contained in port P. Port P contains

all states of the protein synthesis process.

This initial simplistic comparison does not preclude later comparisons with artificial

automata on many additional levels, layers and dimensions, including reading in both

directions, regulatory microRNAs arising from the complementary strand to then regu-

late the coding strand, etc.

The tRNAs are necessary to implement the logical structure of the “conditional con-

trol” decision node. The temporary storage of the forming amino acid chain is con-

tained in port P. Port P contains all states of the protein synthesis process. The tRNA

is more than memory, as it selects the matching amino acid. Perhaps its RNA is a pre-

scriptive selection program that is processed by associated proteins that form a sepa-

rate computer system capable of interacting with the ribosome system–the tRNA

output becomes another ribosome input. The above features define the ribosome com-

plex in a greatly reduced and naïve form as a Turing machine. A Turing machine,

however, should be able to simulate the logic of any computer algorithm. If the ribo-

some can only execute the logic of one particular algorithm, can we still call it a Tur-

ing machine? “Turing complete” (TC) doesn’t require that all computables are

implemented, but that they could be given the hardware/software of the system. Boneh

et al. [60] proved that DNA-based computers are TC in 1996. But then the next ques-

tion would be, “Does the ribosome have the necessary hardware/software to potentially

implement all computables?”

Babbage’s Analytical Engine was proved to be Turing Complete, as was a theoretical

machine having a single instruction. Since the conditional controls are implemented

using tRNA, the Turing completeness may depend on structures external to the ribo-

some itself. The components are manipulatable [61].

Recently, researchers have “boosted the number of amino acids that can be built into

a “protein” from the 20 covered by the existing genetic code to 276. That’s because

Chin’s new code [62] creates 256 possible four-letter nucleotide words or ‘codons,’

each of which can be assigned to an amino acid that doesn’t currently exist in living

cells... Chin’s team redesigned several pieces of the cell’s protein-building machinery,

including ribosomes and transfer RNAs (tRNAs). Together, they read the genetic code

and match it up to amino acids” [63,64].

Theoretically, since the mRNA, as well as the components of the ribosome along with

all of life’s other components, are manufactured via proteins, which are constructed by

the ribosome, it would be possible to encode proteins necessary to perform math or logi-

cal functions (such as done in Boneh’s DNA computers), so that the ribosome system

could possibly be viewed as TC. Certainly, life has no need to do math for the sake of

computation (which is one aspect of TC). Evidence does exist that life’s machinery

might be able to do such computations [65]. But since the subject of Turing complete-

ness of ribosomal systems is not the focus of this paper, we shall simply point out that

the flexibility of ribosomal systems is seen to be much greater than originally suspected.

Discussion
The question becomes, “Does the mRNA instruct the ribosome, or is it just a prescrip-

tive informational data feed?” Notice that the algorithm of the ribosome is not altered

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 17 of 24

in any way in producing a product as defined by the prescriptive data stream of the

mRNA. From the perspective of the ribosome, it is simply waiting for data to execute its

program. Its programming does not change and all it sees is input data and all it pro-

duces is output data. This data is acted upon according to the PI contained in the

ribosome’s own logical structure. The ribosome executes decisions as illustrated in the

two decision blocks of Figure 2, suggesting that instructions are contained in the

sequencing and configurations of the many proteins and RNA in the ribosome itself,

independent of the PI data feed.

The logical mappings (codon to amino acid) that are performed are undeniably

cybernetic. The sequence of instructions in the ribosomal proteins and RNA meets the

criteria of an algorithm given in the introduction and proceeding section. The PI data

feed gives no instructions to the ribosomal operation, only to the protein product. For

example, the PI data feed gives no command to the ribosome to polymerize an amino

acid to the product chain. The instruction to “add” a monomer to the polyamino acid

output is inherent in the independent ribosomal algorithms. But the question of

“Which particular amino acid?” to add can only be answered by investigating a syner-

gism of PI’s from multiple sources:

1) the data stream

2) the tRNAs that link anticodon on one end to the “correct” amino acid on the

other end

3) the sequence and conformation of each aminoacyl-tRNA synthetase

4) the algorithmic processing by the ribosome

The R-algorithm satisfies the rule, Algorithm = data + Control, generating machine

states as shown below. These statements proposed are therefore logical statements.

Their decision capability thereby grants full control of the system. This proposed for-

mal organization enables the functions of the R-algorithm to be hardware

implemented.

Machine states of the ribosome are as follows, where n = the machine step relative

to translocation action:

1. tRNA (n-2) in Port E to be expelled

2. tRNA (n-1) in Port P contains previous amino acid chain

3. tRNA (n) in Port A is current amino acid

By comparison, the electrical circuit configuration of logic gates in a microprocessor

functions in the same way. The data feed does not contain instructions with electrical

circuits nor does mRNA in cellular cybernetics (with the possible exception of the stop

codons).

Formal rules govern the hardware functionality of computers through the hardware

instantiation of logical algorithms. In computers, firmware accomplishes boot-up pro-

cedures that allow the operating system to communicate with input/output devices.

This set of software that is executed upon boot-up loads the operating system and

translates operating system calls into the language of input/output devices such as key-

boards disk drives and monitors. It has been proposed that a similar set of formal

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 18 of 24

rules may be instantiated into cellular wetware circuitry (mentioned below) to model

the operational behavior of the cell [57]. A comparative analysis between a computers

central memory and that of eukaryote DNA strongly suggests that DNA and its mole-

cular machinery operate as a central biological memory system serving as a repository

of cellular information. In this analogy the DNA functions at a minimum as a biologi-

cal hard drive operating within its nuclear environment. It has been proposed that the

cellular circuits used to request prescribed data use a biological equivalent of firmware

as used in computers systems [57]. This firmware may exist in the instantiation of

transduction pathways (possibly in the cytosol) that transfers cellular requests for pro-

teins into the RNA language of the nucleus/DNA. Also, epigenetic processes would

seem to behave like firmware. In this analogy, epigenetic processes boot up the cell.

This would enable the histone code leading to stem cell differentiation [57].

Wetware in cells is equivalent to the logical gates, communication circuits and other

gate structures that define microprocessor hardware. On the biological side the analogy

would include the transcription factors, transduction molecules and other combina-

tions of protein and RNA molecules in which their combined patterns perform func-

tions. Comparing computer science with life doesn’t mean that we have to maintain an

analogy at every point. Differences in data format and instructions whether implicit or

explicit (as in stop codons) may be giving us clues as to the functionality of biological

operating systems in living systems. How all this came to be is a subject of intense

research in such fields as ProtoBioCybernetics and ProtoBioSemiotics [7]. ProtoBioCy-

bernetics is the study of how initial bona fide controls (not just mere constraints)

emerged in the first primitive protocells to steer physicochemical events toward formal

organization and eventual biofunctionality. ProtoBioSemiotics studies how initial com-

munication systems developed within and possibly between protocells.

mRNA Characterization

By contrast, the mRNA neither makes decisions nor alters any programming direction

path (execution vector) within itself or alters the program structure, computation or

control of the R-algorithm. This is because there is no contingency to interpret map-

pings and no path to intrinsically implement control changes to the ribosome within

the mRNA formal structure. It could be argued that the mature mRNA contains

recorded programming choices “already made.” It is likely that mRNA is the result of

some other program involving a series of pre-recorded programming choices. The

point at hand, however, is that the mRNA by itself does not command or make pro-

grammable decisions. All of that capability resides in the ribosome. In other words,

mRNA is not executable by itself. These properties, or lack thereof, give the mRNA

the characteristic of prescriptive programming data, equivalent to the machine code

data stored in a computer’s memory. Since the codons and their constituents represent

choices that are neither a product of physical law nor chance contingency [23], they

represent specific choices of PI manifested as configurable switch settings. We must

make careful distinction between “configurable switches” and “configurable switch-set-

tings.” “Configurable switches” are purely physical, whereas “configurable switch set-

tings” are purely formal. This is what ultimately defines The Cybernetic Cut [23].

Configurable switch settings are symbolic representations of protein prescription (spe-

cifically selected physical symbol vehicles; tokens), and therefore are an instance of

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 19 of 24

prescribed data (non-physical, formal PI). One could argue that the promoter sections

and regulatory components of the gene are part of a gene algorithm. However, all of

these functions may be considered as a combination of meta data (promoter sequences

and histone code identifying gene status), location tags and other formatting structures

present in every gene. The format identifies the location, alignment and initiation start

site location for the RNA polymerase II read head along with other regulating func-

tions of an equivocated chromosome disk drive known as the DNA Hard Drive [57].

DNA characterization

We make the argument that the genome operates using a language based system com-

posed of alphabetical strings of nucleotides forming words and constrained by gram-

matical rules. We have shown that codons are strings of alphabetical nucleotides that

are encoded to allow the 20 character (amino acid) alphabet of the protein language to

be represented using the 4 character alphabet of the DNA language. However, we posit

that the genome is composed of words in the form of regulatory RNA’s, linRNA’s etc.

along with consensus sequences such as the TATA box, promoter, enhancer and insu-

lator sequences that are recognized by the genome machinery. We posit that there are

additional rules of grammar, other than the triplet rule for codons that defines the rule

allowing overlaid and multilayered genes, reverse transcription, alternative splicing and

epigenetic operations.

A gene may be considered to be part of a subroutine [25] within a larger complex

cellular software algorithm. Each gene contains both words such as its promoter

regions and data in the form of codons. The subroutine is acted upon when executed

within the DNA environment. We posit that the DNA language exists based upon

coherent orderly transcription, editing, error detection, repair and genome duplication

processes involving recognition of reading genome sequences. These consensus

sequences exhibit semantic functionality as defined by the interactions between

sequences and the bio-machinery in the nucleus. The alphabet, words grammar and

language models we developed fit within the Automata models developed earlier.

Conclusion
The concept of Prescriptive Information has been examined as related to the ribosome,

mRNA and in part to the genome. We have shown that there is a dichotomy within

the definition of Prescriptive Information resulting in a differentiation between pre-

scribed algorithms and prescribed data. Examination of mature mRNA in eukaryotic

cells reveals no executable path or mechanism for control within its contents. Since

there is no mechanism for control, there is no contingency for mRNA to execute any

kind of algorithmic process (other than a simple sequence), and therefore mRNA is

defined as prescriptive data satisfying the data component of the purposed dichotomy

definition. This definition covers all mRNA sequences and has extensions to genes

themselves with respect to the codons defined in their reading frame. Furthermore, by

viewing the amino-acid sequence in protein space, we have shown that it is representa-

tive of letters which combine to form extremely long words (proteins). Since words

have been shown not to be algorithmic, this enforces our claim that both the informa-

tion in each protein word (language £) and its mapping back into sequential DNA

Hamming block codes (alphabetical strings of language L) are instantiations of

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 20 of 24

prescribed data. For these reasons, a gene (reading frame section) and its associated

mRNA is not an algorithm. But yet, it is an instance of Prescribed Information because

it contains a prescription of specific order of the base 4 digital language representing a

protein or RNA product. We would add the caveat that the start and stop codons can

be considered as boundary conditions defining the beginning and the ends of the data

set thus representing an implicit command recognized by the ribosome. The polyco-

don symbolically prescribes the amino-acid sequence of each protein primary structure

while the transcription procedure is a bona fide formal decryption governed by rules,

not invariant physical laws.

An operational analysis of the ribosome has revealed that this molecular machine

with all of its parts follows an order of operations to produce a protein product. This

order of operations has been detailed in a step-by-step process that has been observed

to be self-executable. The ribosome operation has been proposed to be algorithmic (R-

algorithm) because it has been shown to contain a step-by-step process flow allowing

for decision control, iterative branching and halting capability. The R-algorithm con-

tains logical structures of linear sequencing, branch and conditional control. All of

these features at a minimum meet the definition of an algorithm and when combined

with the data from the mRNA, satisfy the rule that Algorithm = data + control.

Remembering that mere constraints cannot serve as bona fide formal controls, we

therefore conclude that the ribosome is a physical instantiation of an algorithm.

There is a synergy between the machinery of the ribosome and its coherence with

the language context of the DNA/RNA environment, reinforcing the prescribed algo-

rithmic operations of the ribosome. There is no known physicodynamic cause for the

codon to tRNA translation scheme. Since all genes can be modeled using rules (be

they grammar or logical) rather than physicodynamic determinism, we inductively

assert that the operation and organization of the genome operate under the influence

of a programming language. The genome can be considered as a collective ensemble of

instructions and data. Portions of the DNA sequences are algorithmic instantiations.

This is evidenced for example, by pre-initiation, enhancer and promoter regions, lincR-

NA’s, siRNA’s and a host of other instructive sequences, that collectively instruct direct

functionality such as gene regulation. In addition to the instruction constructs, the

genome is also composed of data in the form of codons. This results in mature

mRNAs that are handled as data by other processors (ribosome) which are executing

their own algorithms. In other words there are “multiple programming languages” in

the cell.

RNA Polymerase II performs many tasks in order to copy genetic information.

Included are generating gene copies and regulatory RNA structures. There are at least

12 subunits in human RNA polymerase that must assemble together in the proper

order and in readable locations (promoter sites) upon the genome. As such, there exist

multiple transcription factors that work coherently within the DNA system to locate

and set up the pre-initiation sites from which the RNA polymerase will assemble.

Once assembled, RNA polymerase waits for a start signal at which time it begins to

unwind the double helix strand and reads the genetic data from which a copy is made

during the elongation process. At the end point of the gene, the copy process is termi-

nated. As the RNA polymerase advances along the DNA strand, it must select the

appropriate RNA nucleotide that is paired with the current complementary DNA base.

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 21 of 24

Successful selection may be part of a decision process leading to the next sequential

nucleotide in the DNA sequence. The way in which RNA polymerase initiates the tran-

scription process to locate, copy complementary data and terminate the copy process

strongly suggests a formal procedure of operations that is algorithmic. Although the

determination of whether or not RNA polymerase is algorithmic is beyond the scope

of this manuscript, it lends itself to modeling as an instantiation of still another CCCC

prescribed algorithm.

The correlation between linguistic properties examined and implemented using

Automata theory give us a formalistic tool to study the language and grammar of bio-

logical systems in a similar manner to how we study computational cybernetic systems.

These examples define a dichotomy in the definition of Prescriptive Information. We

therefore suggest that the term Prescriptive Information (PI) be subdivided into two

categories: 1) Prescriptive data and 2) Prescribed (executing) algorithm.

It is interesting to note that the CPU of an electronic computer is an instance of a

prescriptive algorithm instantiated into an electronic circuit, whereas the software

under execution is read and processed by the CPU to prescribe the program’s desired

output. Both hardware and software are prescriptive.

Abbreviations used in this paper
(PI): Prescriptive Information; (MSS): Material Symbol System; (CCCC): Choice-Con-

tingent Causation and Control; (fit): functional bit; (FSC): Functional Sequence Com-

plexity; (FI): Functional Information; (DI): Descriptive Information; (R-Algorithm):

Ribosome algorithm; (FSM): Frame Shift Mutation.

Conflicting interests
The authors declare that they have no competing interests.

Author details
1Control Systems Modeling and Simulation, General Dynamics, Sterling Heights MI, USA and College of Arts and
Science, Math Department, University of Phoenix, Detroit MI, USA. 2Director, The Gene Emergence Project, The Origin
of Life Science Foundation, Inc., 113 Hedgewood Dr., Greenbelt, MD 20770-1610 USA. 3Retired Scientist and Professor
(APU, U-MD, U-MN & U-WI), 5002 Holly Tree Rd, Wilmington, NC 28409.

Authors’ contributions
DJD conceived the overall concept including generation of proposed ribosome algorithm. DJD managed iterative
refinement of this review from input provided by co-authors. DLA and DJ provided major insight into subject matter
contributing to the technical content and refinement of the manuscript. All authors contributed to writing the
manuscript.

Received: 14 December 2011 Accepted: 14 March 2012 Published: 14 March 2012

References
1. Xingquan Zhu ID: Knowledge Discovery and Data Mining: Challenges and Realities Hershey, New York, Information

Science Reference; 2007.
2. Carothers JM, Oestreich SC, Davis JH, Szostak JW: Informational complexity and functional activity of RNA structures.

J Am Chem Soc 2004, 126(16):5130-7.
3. Hazen RM, Griffin PL, Carothers JM, Szostak JW: Functional information and the emergence of biocomplexity. Proc

Natl Acad Sci USA 2007, 104(Suppl 1):8574-81.
4. McIntosh AC: Information And Entropy - Top-down Or Bottom-up Development In Living Systems? International

Journal of Design & Nature and Ecodynamics 2010, 4(4):351-385.
5. Sharov AA: Role of Utility and Inference in the Evolution of Functional Information. Biosemiotics 2009, 2(1):101-115.
6. Szostak JW: Functional information: Molecular messages. Nature 2003, 423(6941):689.
7. Abel DL: What is ProtoBioCybernetics? In The First Gene: The Birth of Programming, Messaging and Formal Control.

Edited by: Abel DL. New York, N.Y, LongView Press-Academic; 2011:1-18.
8. Schrum JP, Zhu TF, Szostak JW: The Origins of Cellular Life. Cold Spring Harbor Perspectives in Biology 2010, 2(9),

10.1101/cshperspect.a002212.

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 22 of 24

http://www.ncbi.nlm.nih.gov/pubmed/15099096?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17494745?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22432115?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20160960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12802312?dopt=Abstract

9. Abel DL: The First Gene: The Birth of Programming, Messaging and Formal Control New York, NY, LongView Press-
Academic; 2011.

10. Abel DL: The biosemiosis of prescriptive information. Semiotica 2009, 2009(174):1-19.
11. Abel DL: Prescriptive Information (PI) [Scirus Topic Page]. 2009.
12. Abel DL: The GS (genetic selection) Principle. Front Biosci 2009, 14:2959-69.
13. Abel DL: Constraints vs Controls. The Open Cybernetics and Systemics 2010, 4:14-27.
14. Abel DL, Trevors JT: More than metaphor: genomes are objective sign systems. New York, Nova Science Publishers,

Inc; 2007.
15. Antoun A, Pavlov MY, Lovmar M, Ehrenberg M: How initiation factors tune the rate of initiation of protein synthesis

in bacteria. EMBO J 2006, 25(11):2539-50.
16. Trevors JT, Abel DL: Chance and necessity do not explain the origin of life. Cell Biol Int 2004, 28(11):729-39.
17. Abel DL: Linear Digital Material Symbol Systems (MSS). In The First Gene: The Birth of Programming, Messaging and

Formal Control. Edited by: Abel DL. New York, N.Y, LongView Press-Academic; 2011:135-60.
18. Abel DL: The Genetic Selection (GS) Principle. In The First Gene: The Birth of Programming, Messaging and Formal

Control. Edited by: Abel DL. New York, N.Y., LongView Press-Academic; 2011:161-188.
19. Abel DL: The Formalism > Physicality (F > P) Principle. In The First Gene: The Birth of Programming, Messaging and

Formal Control. Edited by: Abel DL. New York, N.Y., LongView Press-Academic; 2011:325-356.
20. Maynard Smith J: The concept of information in biology. Philosophy of Science 2000, 67(June):177-194 (entire issue is

an excellent discussion).
21. Jablonka E: Information: Its interpretation, its inheritance, and its sharing. Philosophy of Science 2002, 69:578-605.
22. Adami C: Introduction to Artificial Life New York, Springer/Telos; 1998.
23. Abel DL: The ‘Cybernetic Cut’: Progressing from Description to Prescription in Systems Theory. The Open Cybernetics

and Systemics Journal 2008, 2:252-262.
24. Abel DL, Trevors JT: Three subsets of sequence complexity and their relevance to biopolymeric information. Theor

Biol Med Model 2005, 2:29.
25. Durston KK, Chiu DK, Abel DL, Trevors JT: Measuring the functional sequence complexity of proteins. Theor Biol Med

Model 2007, 4:47.
26. Durston KK, Chiu DKY: Chapter 5. Functional Sequence Complexity in Biopolymers. In The First Gene: The Birth of

Programming, Messaging and Formal Control. Edited by: Abel DL. New York, N.Y: LongView Press-Academic;
2011:117-134.

27. Stone HS: Introduction to Computer Organization and Data Structures New York, McGraw-Hill; 1972.
28. Harvey B: Computer Science Logo Style Massachusetts London, England, The MIT Press; 1997.
29. Baer RM, Martinez HM: Automata and biology. Annu Rev Biophys Bioeng 1974, 3(0):255-91.
30. Martinez-Perez IM, Zimmermann KH, Ignatova Z: An autonomous DNA model for finite state automata. Int J

Bioinform Res Appl 2009, 5(1):81-96.
31. Mizas C, Sirakoulis G, Mardiris V, Karafyllidis I, Glykos N, Sandaltzopoulos R: Reconstruction of DNA sequences using

genetic algorithms and cellular automata: towards mutation prediction? Biosystems 2008, 92(1):61-8.
32. Yang J, Meng X, Hlavacek WS: Rule-based modelling and simulation of biochemical systems with molecular finite

automata. IET Syst Biol 2010, 4(6):453-66.
33. Leung S, Mellish C, Robertson D: Basic Gene Grammars and DNA-ChartParser for language processing of Escherichia

coli promoter DNA sequences. Bioinformatics 2001, 17(3):226-36.
34. Chomsky N: Three Models for the Description of Language. IRE Transactions on Information Theory 1956, 2(3):113-123.
35. Chomsky N: Syntactic Structures New York, N.Y., Mouton & Co; 1957.
36. Kull K: Biosemiotics in the twentieth century: A view from biology. Semiotica 1999, 127:385-414.
37. Rocha LM: Evidence Sets and Contextual Genetic Algorithms: Exploring uncertainity, context, and embodiment in cognitive

and biological systems State University of New York, Ph.D Thesis; 1997 [http://informatics.indiana.edu/rocha/dissert.html].
38. Rocha LM: Selected self organization and the semiotics of evolutionary systems. In Evolutionary Systems: Biological

and Epistemological Perspectives on Selection and Self-Organization. Edited by: van der Gulik PT, Hoff WD. The
Netherlands, Kluwer; 1998:.

39. Yockey HP: Information Theory and Molecular Biology Cambridge University Press; 1992.
40. Woodson SA: Folding mechanisms of group I ribozymes: role of stability and contact order. Biochem Soc Trans 2002,

30(Pt 6):1166-9.
41. Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, Rheinbay E, Grabherr M, Forche A, Reedy JL,

Agrafioti I, Arnaud MB, Bates S, Brown AJ, Brunke S, Costanzo MC, Fitzpatrick DA, de Groot PW, Harris D, Hoyer LL,
Hube B, Klis FM, Kodira C, Lennard N, Logue ME, Martin R, Neiman AM, Nikolaou E, Quail MA, Quinn J, Santos MC,
Schmitzberger FF, Sherlock G, Shah P, Silverstein KA, Skrzypek MS, Soll D, Staggs R, Stansfield I, Stumpf MP, Sudbery PE,
Srikantha T, Zeng Q, Berman J, Berriman M, Heitman J, Gow NA, Lorenz MC, Birren BW, Kellis M, Cuomo CA: Evolution
of pathogenicity and sexual reproduction in eight Candida genomes. Nature 2009, 459(7247):657-62.

42. Santos MA, Tuite MF: The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic
Acids Res 1995, 23(9):1481-6.

43. Yona G, Levitt M: Towards a complete map of the protein space based on a unified sequence and structure
analysis of all known proteins. Proc Int Conf Intell Syst Mol Biol 2000, 8:395-406.

44. Rocha LM: Evolution with material symbol systems. Biosystems 2001, 60:95-121.
45. Rocha LM, Hordijk W: Material representations: from the genetic code to the evolution of cellular automata. Artif

Life 2005, 11(1-2):189-214.
46. Abel DL: The three fundamental categories of reality. In The First Gene: The Birth of Programming, Messaging and

Formal Control. Edited by: Abel DL. New York, N.Y., LongView Press-Academic: Biolog. Res. Div; 2011:19-54.
47. Knuth D: Seminumerical Algorithms, The Art of Computer Programming Reading,, Massachusetts, Addison-Wesley; 1969.
48. Knuth D: Fundamental Algorithms: Third Edition. Reading, Massachusetts Addison-Wesley; 1997.
49. Kowalski RA: Algorithm = logic+conrol. Communications of the ACM 1979, 22(7):424-436.
50. Fei J, Richard AC, Bronson JE, Gonzalez RL Jr: Transfer RNA-mediated regulation of ribosome dynamics during

protein synthesis. Nat Struct Mol Biol 2011, 18(9):1043-51.

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 23 of 24

http://www.ncbi.nlm.nih.gov/pubmed/19273248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16724118?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16724118?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15563395?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16095527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18062814?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4608534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19136366?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18243517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18243517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21073243?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21073243?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11294788?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11294788?dopt=Abstract
http://informatics.indiana.edu/rocha/dissert.html
http://www.ncbi.nlm.nih.gov/pubmed/12440997?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19465905?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19465905?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7784200?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10977100?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10977100?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11325506?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15811227?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21857664?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21857664?dopt=Abstract

51. Crick F: Central dogma of molecular biology. Nature 1970, 227(5258):561-3.
52. Abel DL: The Cybernetic Cut and Configurable Switch (CS) Bridge. In The First Gene: The Birth of Programming,

Messaging and Formal Control. Edited by: Abel DL. New York, N.Y., LongView Press-Academic; 2011:55-74.
53. Abel DL: What utility does order, pattern or complexity prescribe? In The First Gene: The Birth of Programming,

Messaging and Formal Control. Edited by: Abel DL. New York, N.Y., LongView Press-Academic; 2011:75-116.
54. Geach PT, Bednarowski WF: The Law of Excluded Middle. Proceedings of the Aristotelian Society 1956, 30:59-90.
55. Israeli Na, NG : Coarse-graining of cellular automata, emergence, and the predictability of complex systems. Physical

Review 2006, 73(2):1-17.
56. Nobelprize.org; 2011 [http://nobelprize.org/educational/medicine/dna/a/translation/].
57. D’Onofrio DJ, An G: A comparative approach for the investigation of biological information processing: an

examination of the structure and function of computer hard drives and DNA. Theor Biol Med Model 2010, 7:1-20.
58. Rodnina MV, Beringer M, Wintermeyer W: How ribosomes make peptide bonds. Trends Biochem Sci 2007, 32(1):20-6.
59. Frank J, Gao H, Sengupta J, Gao N, Taylor DJ: The process of mRNA-tRNA translocation. Proc Natl Acad Sci USA 2007,

104(50):19671-8.
60. Boneh DDC, Lipton JR, Sgall J: On The Computational Power of DNA. [http://www.dna.caltech.edu/courses/cs191/

paperscs191/bonehetal.pdf].
61. Johnson DE: Programming of Life Sylacauga, Alabama, Big Mac Publishers; 2010.
62. Wang K, Neumann H, Peak-Chew SY, Chin JW: Evolved orthogonal ribosomes enhance the efficiency of synthetic

genetic code expansion. Nat Biotechnol 2007, 25(7):770-7.
63. Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW: Encoding multiple unnatural amino acids via evolution of a

quadruplet-decoding ribosome. Nature 2010, 464(7287):441-4.
64. Geddes L: Life’s Code Rewritten in Four-letter Words. 2010.
65. Mavaddat FPB: URISC: The Ultimate Reduced Instruction Set Computer. Int J Elect Enging Educ 1988, 25:327-334.

doi:10.1186/1742-4682-9-8
Cite this article as: D’Onofrio et al.: Dichotomy in the definition of prescriptive information suggests both
prescribed data and prescribed algorithms: biosemiotics applications in genomic systems. Theoretical Biology and
Medical Modelling 2012 9:8.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

D’Onofrio et al. Theoretical Biology and Medical Modelling 2012, 9:8
http://www.tbiomed.com/content/9/1/8

Page 24 of 24

http://www.ncbi.nlm.nih.gov/pubmed/4913914?dopt=Abstract
http://nobelprize.org/educational/medicine/dna/a/translation/
http://www.ncbi.nlm.nih.gov/pubmed/20056004?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20056004?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17157507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18003906?dopt=Abstract
http://www.dna.caltech.edu/courses/cs191/paperscs191/bonehetal.pdf
http://www.dna.caltech.edu/courses/cs191/paperscs191/bonehetal.pdf
http://www.ncbi.nlm.nih.gov/pubmed/17592474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17592474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20154731?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20154731?dopt=Abstract

	Abstract
	Background
	Genomic Information
	Language Mappings
	Algorithms
	Ribosome Algorithm

	Discussion
	mRNA Characterization
	DNA characterization

	Conclusion
	Abbreviations used in this paper
	Conflicting interests
	Author details
	Authors' contributions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

